skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Street, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A TOM Toolkit plugin module designed to enable users to submit requests for Target-Of-Opportunity observations to the Neil Gehrel's Swift Space Telescope. 
    more » « less
  2. Abstract The Vera C. Rubin Legacy Survey of Space and Time will discover thousands of microlensing events across the Milky Way, allowing for the study of populations of exoplanets, stars, and compact objects. We evaluate numerous survey strategies simulated in the Rubin Operation Simulations to assess the discovery and characterization efficiencies of microlensing events. We have implemented three metrics in the Rubin Metric Analysis Framework: a discovery metric and two characterization metrics, where one estimates how well the light curve is covered and the other quantifies how precisely event parameters can be determined. We also assess the characterizability of microlensing parallax, critical for detection of free-floating black hole lenses. We find that, given Rubin’s baseline cadence, the discovery and characterization efficiency will be higher for longer-duration and larger-parallax events. Microlensing discovery efficiency is dominated by the observing footprint, where more time spent looking at regions of high stellar density, including the Galactic bulge, Galactic plane, and Magellanic Clouds, leads to higher discovery and characterization rates. However, if the observations are stretched over too wide an area, including low-priority areas of the Galactic plane with fewer stars and higher extinction, event characterization suffers by >10%. This could impact exoplanet, binary star, and compact object events alike. We find that some rolling strategies (where Rubin focuses on a fraction of the sky in alternating years) in the Galactic bulge can lead to a 15%–20% decrease in microlensing parallax characterization, so rolling strategies should be chosen carefully to minimize losses. 
    more » « less
  3. A TOM Toolkit plugin module to enable users to send and receive messages via the Hermes astronomical messaging service.  Developed in collaboration with the Scaleable Infrastructure for Multi-Messenger Astrophysics project. 
    more » « less
  4. Framework for building Target and Observation Manager systems for the management of astronomical projects.     v2.19.6 includes a substantial revision to the target model that enables users to customize the parameters and functions associated with the astronomical targets they study, as well as improved target cross-matching. 
    more » « less
  5. A TOM Toolkit plugin application designed for astrophysical events that are non-localized in position on sky, such as gravitational wave detections.  This plugin includes functionality for gathering and displaying alert information from GraceDB, and can associate a number of targets with each event instance.  It supports the creation of active and retired lists of candidate targets to facilitate follow-up observations. 
    more » « less
  6. Abstract We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with Hβhaving the longest delay at τ cent = 4.0 0.9 + 0.9 days and Heiihaving the shortest delay with τ cent = 0.9 0.8 + 1.1 days. We also detect velocity-resolved behavior of the Hβemission line, with different line-of-sight velocities corresponding to different observed time delays. Combining the integrated Hβtime delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass of M BH = 1.1 0.3 + 0.2 × 10 7 M. Modeling of the full velocity-resolved response of the Hβemission line with the phenomenological codeCARAMELfinds a similar mass of M BH = 1.2 0.7 + 1.5 × 10 7 Mand suggests that the Hβ-emitting broad-line region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθi≈ 33° and with gas motions that are dominated by rotation. The new photoionization-based BLR modeling toolBELMACfinds general agreement with the observations when assuming the best-fitCARAMELresults; however,BELMACprefers a thick-disk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing. 
    more » « less
  7. Abstract We present the results of a new reverberation mapping campaign for the broad-line active galactic nucleus (AGN) in the edge-on spiral IC 4329A. Monitoring of the optical continuum with V- band photometry and broad emission-line flux variability with moderate-resolution spectroscopy allowed emission-line light curves to be measured for H β , H γ , and He ii λ 4686. We find a time delay of 16.3 − 2.3 + 2.6 days for H β , a similar time delay of 16.0 − 2.6 + 4.8 days for H γ , and an unresolved time delay of − 0.6 − 3.9 + 3.9 days for He ii . The time delay for H β is consistent with the predicted value from the relationship between AGN luminosity and broad-line region radius, after correction for the ∼2.4 mag of intrinsic extinction at 5100 Å. Combining the measured time delay for H β with the broad emission-line width and an adopted value of 〈 f 〉 = 4.8, we find a central supermassive black hole mass of M BH = 6.8 − 1.1 + 1.2 × 10 7 M ⊙ . Velocity-resolved time delays were measured across the broad H β emission-line profile and may be consistent with an “M”-like shape. Modeling of the full reverberation response of H β was able to provide only modest constraints on some parameters, but does exhibit agreement with the black hole mass and average time delay. The models also suggest that the AGN structure is misaligned by a large amount from the edge-on galaxy disk. This is consistent with expectations from the unified model of AGNs, in which broad emission lines are expected to be visible only for AGNs that are viewed at relatively face-on inclinations. 
    more » « less
  8. null (Ed.)
  9. Abstract We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with M p = 0.59 0.05 + 0.15 M J at a projected orbital separation r = 1.4 0.3 + 0.8 au, and the host is a ∼1.1Mturnoff star at ∼1.3 kpc. At r 14 , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet’s orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the “inner–outer correlation” inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radiusθEbut also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system. 
    more » « less